ENPH 353: Control Agent for Driving and License Plate Recognition

ENPH 353: Control Agent for Driving and License
Plate Recognition

Thomas Deckers, James Seto

University of British Columbia

Abstract—Classical and deep machine learning techniques
were applied to develop an agent to control a robot in a simulated
environment. The agent was evaluated in competition on its
ability to obey traffic laws and recognize characters on license
plates.

I. INTRODUCTION AND DESCRIPTION OF TASK

Autonomous driving on public roads is becoming a reality in
our world. Driverless cars must be able to recognize obstacles
such as pedestrians and traffic to avoid potentially fatal colli-
sions. Sensors such as cameras, IR sensors and accelerometers
are used to receive information about the controlling agent’s
surroundings.

In this project, we explore the challenges of developing
an autonomous driving agent in a timed competition. The
agent is evaluated on its ability to obey traffic laws and
recognize license plates of parked cars in a simulated Gazebo
environment. Limited to a single front-facing camera, we apply
both classical and machine learning techniques to use an image
feed to navigate, avoid collisions and recognize license plates
while keeping within the boundaries of the road.

Qutside ring

Inside ring

Robot
starting position

Parked car

Pedestrian

Fig. 1. Competition environment

II. ARCHITECTURE AND STRUCTURE OVERVIEW

In our architecture design, we prioritized approaches that
would allow us to apply the skills we learned in the course
over traditional methods that might have been faster or
more reliable. We also wanted a structure that would allow

Parked
car

Parking ID

License
plate

Fig. 2. Robot camera view

development of components in parallel, to allow for more
efficient work in light of the available amount of time. For
these reasons among others, our architecture had two systems
running simultaneously, one which fully controlled the robot’s
steering, and one for identifying, reading, and reporting license
plates.

This also very naturally divided our communication with the
simulation; the driving controller has exclusive control over the
robot’s velocity, and the license-plate controller has exclusive
control over the channel for submitting license plates. This
eliminates any risk of problems arising from overlapping
commands.

Communication between these two controllers is done via a
dedicated channel. This allows the steering controller to know
when to turn into the inside ring.

/R1/pi_camera/image_raw /license_plate
Robot’s front facing camera Plate submission.

Steering Controller License plate reader

Fig. 3. Simplified illustration of control structure

/Simulation

/R1/cmd_vel
Robot steering

Controller

Steering was controlled was by a convolutional neural
network (CNN) trained on data from a human driver for
driving around the rings, and was hard-coded to take the first
turn onto the outer ring, as well as the turn into the inner



ring. Stopping for the pedestrian and the truck was also done
by classical CV.

A classical CV pipeline identified the presence and location
of license plates in the frame, and cropped the image into
individual characters to be predicted by a CNN. The robot was
programmed in the ROS Melodic framework, using rospy.

III. LICENSE PLATE RECOGNITION AND SUBMISSION
A. Detailed description

The license plate recognition consists of an image pipeline
and two CNN models for character recognition. The image
pipeline filters the frames from the robot camera output and
crops the license plate characters for the CNN to predict. The
license plates were fixed in a format of “’Letter Letter Number
Number”, allowing us to split letters and numbers based on the
location of the crop. One CNN was trained to predict solely
on numbers, and the other on letters. This agent is built in a
stand-alone ROS node, and subscribes to the camera node to
obtain the frames. The agent publishes to the score tracking
node of the competition, as well as the robot controller node
to communicate the status of recognized license plates.

This strategy was chosen for simplicity and because of the
limitations in training data to work with. The image output
from the robot camera is in majority not useful for character
recognition; the image pipeline helped reduce the arbitrary
data to train a CNN easily. This pipeline also enabled the
ability to train the CNN on locally generated data as opposed
to obtaining data manually from the competition space.

An attempt was made to apply homography to perform
character recognition, but this technique performed poorly
in initial tests. The low resolution and noise from the robot
camera output caused many false matches of keypoints, and
there was a lack of unique keypoints in the competition space
to leverage.

B. Image pipeline

The OpenCYV library, a popular computer vision library for
Python, was used to manipulate the frames from the robot’s
camera. First, the frames from the camera were converted into
an HSV representation. A mask was used to filter for the
blue colour of the parked cars. In order to remove noise and
parked cars in the background, a morphological transform was
applied.

The characteristic to detect a license plate on the screen was
to find two peaks, summing across the columns of the mask.
The detected license plate would be situated between the two
peaks, with edges corresponding to the peak dropoffs.

An iteration across rows was used to determine the corners
of parked car faces, and a normalized view of the license
plate was obtained through a perspective transform using the
obtained corners. Every character on the license plate were
cropped into a uniform size to input into the CNN models.

Additional heuristics were used to filter images that may be
too poor quality to be useful. A problem encountered with
the CNN models was that predictions on heavily distorted
images were falsely confident. To filter image distortion, a

ENPH 353: Control Agent for Driving and License Plate Recognition

Cleaned Mask

200 400 600 800

1000 1200

Fig. 4. A binary image of several parked cars after masking and morphological
transform. The two tallest columns border the license plate of the car in the
foreground.

40000
35000
30000
23000
20000

15000

10000
o

0 00 400 600 800 1000 1200
Column

Number of blue pixels

Fig. 5. A plot of the processed image, summed by column, and the threshold
used to locate the license plate edges.

heuristic based on the perspective angle of the license plate
was implemented. This heuristic was calculated by finding the
relative length difference between the two vertical edges of the
parked car. This, along with other measures such as confirming
the presence of gray in the image, improved the reliability
of the license plate recognition by reducing the likelihood of
falsely confident predictions.

Fig. 6. Result of perspective transform

C. Data generation and training

An image generating script was used to produce a dataset
of license plates that imitated the data from the output of the
image pipeline. In the competition environment, shadows pro-
duced varying brightness of the license plates, and a specific



font and font size was used. Artifacts produced by the robot
camera also further reduced the data quality. To compensate
for these factors, manual data augmentation was included in
the license plate generating script. The augmentation applied
a random amount of Gaussian blurring, Gaussian noise and
brightness scaling to the generated images. Additional data
augmentation, including shears, translations, and size scaling
was used to account for the inaccuracies of the image pipeline
in sharp perspective angles.

The CNNs used to recognize the license plates were de-
signed to predict a single character. This enabled the training
of a robust CNN model with minimal training data. The CNN
structure was based off of a Keras tutorial to predict cats and
dogs with minimal data, adapted to output a vector using a
Softmax activation corresponding to the one-hot representation
of a number or letter. The table below outlines the architecture
of the CNN.

TABLE I
LICENSE PLATE PREDICTION NEURAL NETWORK ARCHITECTURE

no. Layer Type Output shape
1 Conv 2D (238,98,32)
2 Max Pooling 2D (119,49,32)
3 Conv 2D (117,47,32)
4 Max Pooling 2D (58,23,32)
5 Conv 2D (56,21,64)
6 Max Pooling 2D (28,10,64)
7 Conv 2D (26,8,64)
8 Max Pooling 2D (13,4,64)
9 Flatten 3328

10 Dense 64

11 Dropout 64

12 Dense 26 or 10T

TOutput is 26 for letters, 10 for numbers

The letter CNN was trained for 100 epochs at a learning rate
of 5E-5 in order to pick up nuances between similar-appearing
letters, while the number CNN was only trained for 50 epochs
at a learning rate of 1E-4. The final dataset consisted of 400
license plate images cropped into 1600 characters. Therefore,
a final dataset size was 800 per model trained. A training data
batch size of 16 was used, and 20% of the data was reserved
for validation.

D. Testing and improvements

Plots of the accuracy and losses were generated for each
CNN trained, one of which is displayed below. These plots
helped determine overfitting or underfitting of the data. An
anomaly is that accuracy of the validation data was consis-
tently higher than the training data. An explanation could be
that validation data was not augmented with shear, translation
or scaling transforms.

To test the performance of the models, the prediction
accuracy was recorded over batches of about 10 test runs of the
competition. The specific character as well as the environment
and robot conditions were noted during incorrect predictions.
This provided insight that led to a range of adjustments, from

ENPH 353: Control Agent for Driving and License Plate Recognition

the architecture chosen to the training dataset and hyperpa-
rameters. Early attempts at license plate readings were done
by a model trained both on numbers and letters. The poor
performance, especially between letters and numbers that ap-
peared similar, led to the realization that the task of predicting
numbers and letters could be split. Initial CNN models also
performed poorly on license plates in shaded conditions. The
font of the training data also initially did not match the font
used in the competition environment, leading to the failure
to predict certain characters. Randomizing the brightness and
replicating the font in the training data significantly improved
the performance of the models trained.

Model Loss Model Accuracy
—— train loss 1.0 1 —— train accuracy
3.0 4 val loss val acc W
254 0.84
2.04 &
<L 0.6
P +
2154
0.4 4
1.0+
0.5 4 0.2 4
0.0 q
T T T T ~ 0.0+ T T T T
0 25 50 75 100 0 25 50 735 100

epoch epoch

Fig. 7. The loss and accuracy per epoch of the final letter prediction model
trained. The CNN was trained with a learning rate of SE-5, with a dataset
size of 800.

E. Conclusion

Generating and augmenting a dataset locally was a success-
ful strategy in training a model to recognize license plates in
the competition space. Brightness variance and font choice
in the generated data were the two significant factors that
determined the quality of the model. A performance test with
the final models yielded an accuracy of 99.7% with 1 missed
character over 10 runs and 32 characters per run. Further
improvements could be made in predictions at sharp angles.
The selected strategy and CNN architecture proved to be
adequate for this application.

IV. DRIVING CONTROL
A. Detailed description

The majority of steering was controlled by an imitation
learning neural-network trained on human driving. The net-
work would take in a downscaled image from the front-facing
camera, and determine whether the robot needed to turn left,
turn right, or go straight.

Left and right turns had the same linear velocity as when
driving straight, with an added angular velocity component.
This angular velocity was manually calibrated to allow the
robot to take the 90° turns in one motion, while keeping
all wheels on the road. Maintaining the same linear velocity



throughout allowed for smooth driving and a steady camera
image.

The CNN’s architecture was taken from the sample neural
network shown in class to distinguish cats and dogs, and ad-
justed to output the required three commands. This architecture
is summarized in the table below.

TABLE I
DRIVING NEURAL NETWORK ARCHITECTURE

no. Layer Type Output shape
1 Conv 2D (142,254,32)
2 Max Pooling 2D (71,127,32)
3 Conv 2D (69,125,64)
4 Max Pooling 2D (34,62,64)
5 Conv 2D (32,60,128)
6 Max Pooling2D (16,30,128)
7 Conv 2D (14,28,128)
8 MaxPooling 2D (7,14,128)
9 Flatten 12544

10 Dropout 12544

11 Dense 512

12 Dense 3

All layers used ReLU activation, except the last, which used
softmax.

The above model was trained on Keras for 6 epochs at a
learning rate of 1E-4 with a batch size of 16.

This is a much more complicated model than necessary for
this application, given the simplicity of the problem. However,
it proved adequate, and its speed was not a limitation on
performance.

The robot used separate neural networks for steering in
the inner and the outer laps, due to the fact that the car
needs to drive in opposite directions in each ring, and due
to the presence of the truck in the inner ring. This approach
allowed for much faster and easier troubleshooting, due to
the ability to make changes to one dataset without worrying
about impacts on the other. As well, when the robot is driving
counterclockwise, the right turn is only ever needed for course-
correction, and vice versa with the left turn when driving
clockwise. This simplification ultimately reduces the size of
the problem-space.

B. Manual control

The robot was controlled manually when taking the first
turn into the outer ring, when switching from the outer ring
to the inner, and when stopping for pedestrians.

The turns were done by overriding the neural network’s
control, and then publishing the highest velocity that didn’t
cause the car to tip. Code execution would then be paused for
the manually calibrated time increment required.

To prevent the car from crashing into pedestrians, we used
the red lines delineating the edges of the crosswalk. The
controller detects when the sum of red values in the view
of the robot’s camera is above a preset threshold, then brings
the robot to a complete stop. Movement in the frame is then
detected by image subtraction. The car remains stopped until
no movement is detected.

ENPH 353: Control Agent for Driving and License Plate Recognition

To clean up the image subtraction data, images from 0.1s
apart are cropped and have a Gaussian blur applied before
subtraction, and a morphological transform applied afterwards,
to reduce noise. Finally, all pixels below a specified threshold
are set to 0. With appropriate calibration, the resulting image
is entirely dark unless the pedestrian was moving.

Fig. 8. The results of the cleaned up image subtraction when the pedestrian
is in the middle of the road (left), and about to start crossing (right). The sum
of pixel values is in the top left of each image.

The pedestrian makes a 90° turn before beginning to cross.
Since pedestrian detection stops as soon as the car starts
moving, it is important to ensure that the algorithm is tuned
to be sensitive enough to detect this turn, otherwise there is a
risk of starting to drive just before the pedestrian walks onto
the road.

To mitigate the risk of the pedestrian walking into the car
while the car is on the crosswalk, the speed of the car is
increased while either of the red lines is still in sight. The
higher speed causes some slight instabilities at corners, but
we saw no issues on the straight crosswalk.

A similar strategy is used to avoid collisions with the truck
driving around the inner ring. After all license plates are
recognized in the outer loop, the neural network control is
overridden and a turning routine lines the robot up at the
intersection. Image subtraction is used to determine whether
the truck is approaching or passing the robot. If the truck is
not approaching, or the truck is no longer detected passing,
the controller transitions into the inner loop and initiates the
inner loop model for navigation.

C. Data generation and training

In order to collect data from human driving, we used the
tele-op twist program to drive the car, and saved a labelled
frame from the camera whenever a command was published
to the robot’s velocity controller. The result of this is that each
key-press captures an image. While training the robot, the key
for movement was pressed repeatedly, a few times per second.
This had the advantage of gaining fine-grain control over what
data was captured. In particular, data was captured at a lower
frequency on straightaways than in turns, to balance the size
of the datasets, and allow for faster training.

Several laps were driven as cleanly as possible with this
method. A few tactics were employed to improve the quality
of this data:



e A slow real time factor was used in Gazebo to allow for
more precise movement.

o The robot model was selected with the movement tool
in Gazebo, which makes large arrows appear overlaid on
the robot. This makes it much easier to align the car with
the road.

o If there was a large issue with a turn, the images were
manually deleted, the car was moved back to the start of
the turn by clicking and dragging it in Gazebo, and the
turn was taken again.

o If a turn wasn’t taken at exactly 90°, corrections were
made quickly to prevent wiggling on the straightaway in
the trained model.

Course-correction data was then collected by modifying the
data-collection script to only capture images when turns of
the appropriate direction were sent to the robot, then driving
intentionally poor laps with frequent course-correction.

One quirk of the above method of capturing data is that an
image is never captured at the very end of turns, since the
last press of the turn button will always be before pressing
the straight button. This was similarly fixed for the outer ring
by only collecting left-turn data, and intentionally overturning
slightly.

After this point, the neural network was improved incre-
mentally by running the robot and identifying situations where
there were problems with the movement. Once a problem was
identified, more data was collected of correctly handling the
problematic situation.

The final dataset sizes can be seen in table III. 20% of the
data was reserved for validation for each network.

TABLE III
DRIVING NEURAL NETWORK DATASET SIZES

Network Command | Number of images
Straight 2731
Outer Ring Left 1035
Right 282
Straight 632
Inner Ring Left 85
Right 458

D. Testing and improvements

Settling on the above method of control took several itera-
tions.

We initially planned to collect data by capturing images
from the robot being driven by an algorithm, as this would
ideally create cleaner data.

However, using the published joint_states topic from
Gazebo proved to have too much latency to allow for precise
movement. While it certainly would have been possible to
slow down the real time factor and optimize the driving code,
it would have been a substantial time investment.

The first attempt at a human-trained model only had func-
tionality for going straight and turning left. Left turns had
no linear velocity, so the robot would pivot in place. If the
robot took perfect 90° left turns every time, it would never

ENPH 353: Control Agent for Driving and License Plate Recognition

need to adjust by turning right. However, due to latency and
other imperfections in the system, this quickly proved far too
idealistic, and resulted in the car frequently driving off the left
side of the road.

Adding right turns to this model came with the side effect
that the robot would pivot left and right repeatedly instead of
taking corners. This is likely because the robot would over-
turn, then over-correct indefinitely. The problem is made worse
by imperfections and overlaps in the data-set.

This issue was initially fixed by adding a small linear
component to the right-turn command. At this point, the robot
could drive a full lap while keeping two wheels on the road
most of the time. However, keeping the same linear velocity
through turns, as in the final result, made for much smoother,
natural, and consistent driving.

V. RESULTS AND CONCLUSION

The license plate recognition agent had a high reliability in
test rounds, with only 1 bad character prediction in 10 rounds.
Optimizations could be made to improve predictions at sharp
viewing angles, but this was not critical to the performance in
the competition space.

In the competition, the control agent scored the maximum
points in license plate recognition. No collisions were made
with pedestrians, traffic or other obstacles, and the agent
maintained its position within the boundaries of the road.
The round was completed in a time of 109 seconds out of
the allotted time of 240 seconds. The quickness of the round
enabled us to prevail over other maximum point scoring teams,
placing us at third place out of twenty.

One avenue for further improvements to this agent is to
generalize its performance to a broader variety of conditions.
The current agent is optimized on the configurations given
for the competition, but could be adapted to a variety of road
layouts or license plate types through additional training and
modifications.

One interesting quirk of the driving algorithm that arose
throughout the development process was that it could drive
many consecutive laps with no issues, but was rather sensitive
to small disturbances. This is particularly interesting because
the laps it drove were not identical each time, and it would
follow a slightly different path after each lap. However,
nudging the car slightly could cause it to miss the next turn
entirely, or start turning right in the middle of a left turn. This
issue was largely addressed in the final model, but could be
interesting for further study, especially for generalizing the
agent

There is also lots of further room for improvement of the
speed of the vehicle. The driving speed was selected to be the
fastest possible speed that wouldn’t cause the car to tip when
stopping. This speed limit could be surpassed by implementing
gradual acceleration and deceleration.

The next likely barrier to speed is the prediction speed of
the driving neural network. As mentioned, the architecture
is more complex than necessary for this application. Camera
images could also be further down-scaled to save processing



time. Given the very simple output space, the calculation
time may be able to be approach the speed of classical PID
implementation, with enough optimization.

Another avenue for speed improvement is in pedestrian
detection. Rather than coming to a stop at every crosswalk
to check for movement, it may be possible to identify the
location of the pedestrian based on a distinctive color. This
way, the vehicle can avoid stopping if the pedestrian is not on
the road.

Overall, this project serves as a clear example of the
potential of CNN’s and machine learning when applied to
simple control problems. Although classical CV approaches
could have been successful in this challenge, with the suite of
modern development tools available, the machine learning ap-
proach proved to be not only feasible with a short development
time, but also yielded reliable and natural results.

ENPH 353: Control Agent for Driving and License Plate Recognition



